Code No.: 14324

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (E.E.E.: CBCS) IV-Semester Main Examinations, January-2021 Electronics Engineering-II

Time: 2 hours

Max. Marks: 60

Note: Answer any NINE questions from Part-A and any THREE from Part-B

Part-A $(9 \times 2 = 18 \text{ Marks})$

Q. No.	Stem of the question	M	L	CO	PO
1.	Which transistor configuration is the best in cascade for an output stage and for an Intermediate stage?	2	1	1	1,2
2.	What is the need of differential amplifier?	2	1	1	1
3.	Negative feedback effects gain of an amplifier. Justify	2	2	1	1,2
4.	List the advantages of negative feedback in amplifiers	2	2	1	1
5.	Explain why RC Phase shift oscillators are not used at high frequencies	2	3	2	1
6.	State the Barkhausen criterion for oscillations	2	2	2	1
7.	Derive the expression for harmonic distortion in power amplifiers	2	4	1	1,2,3
8.	Classify power Amplifiers	2	2	1	1
9.	Draw the frequency response of RC Low-pass circuit for sinusoidal input	2	3	4	1,2
10.	Write the applications of wave shaping circuits	2	2	4	1
11.	Define is CMRR?	2	2	3	1
12.	Write the applications of clamping circuits	2	4	1	1
	$Part-B (3 \times 14 = 42 Marks)$				
13.	Draw the circuit diagram of two stage CE amplifier with bypassed capacitors and with the help of h-parameter equivalent circuits obtain the Overall voltage gain, Overall current gain and input impedances of individual stages	14	4	1	1,2,3
14. a)	With the help of block schematics, show four types of negative feedback in amplifiers	7	2	1	1
b)	For a series-shunt feedback amplifier, if A=100, β =0.1, R_i =1k Ω , R_o =50 Ω , estimate R_{if} , R_{of} , A_f	7	3	1	1,2
15. a)	Draw the circuit diagram and derive the frequency of oscillation of BJT RC phase shift oscillator	10	2	2	1,2,
b)	In the Hartley oscillator L2=0.4m H, C=0.004 μ F. Find L1 if the frequency of oscillations is 120KHz by neglecting the mutual inductance between the coils	4	2	2	1,2,

16. a)	Discuss about conversion efficiency in class A power amplifier	7	4	1	1
b)	A Sinusoidal signal Vs=1.95sin400t is applied to a power amplifier .The resulting current is i ₀ =12sin400t+1.2sin800t+0.9sin1200t+0.4sin1600t.	7	3	1	1,2
	Calculate (i) The total harmonic distortion.				
	(ii) The percentage increase in power because of distortion.				
17. a)	With the neat waveforms, expressions, discuss response of the RC high –pass filter to a square wave input	10	2	4	1,2
b)	Derive the expression for the upper cutoff frequency of low pass RC circuit	4	2	4	1,2,3
18. a)	Discuss about the effect of cascading on bandwidth of multistage amplifiers	7	2	1	1
b)	An RC coupled amplifier has a voltage gain of 1,000. f_1 =50Hz, f_2 =200KHz and a distortion of 5% without-feedback. Find the amplifier Voltage gain, f_1 ', f_2 ' and distortion when negative feedback is applied with feedback ratio of 0.01	7	2	2	1,2
19.	Answer any two of the following:	integra			
a)	Explain the operation of a Wien bridge oscillator.	7	2	2	1,2
b)	Derive an expression for maximum power-conversion efficiency of a class B output stage.	7	2	1	1,2
c)	Draw the basic circuit diagram of negative clamper circuit and explain its operation	7	2	5	1

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 & 2)	66%
.2	Knowledge on application and analysis (Level-3 & 4)	34%
3	*Critical thinking and ability to design (Level-5 & 6)	0
	(*wherever applicable)	
